
NBER WORKING PAPER SERIES

ONLINE ESTIMATION OF DSGE MODELS

Michael D. Cai
Marco Del Negro
Edward P. Herbst

Ethan Matlin
Reca Sarfati

Frank Schorfheide

Working Paper 26826
http://www.nber.org/papers/w26826

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2020

We thank participants at various conferences and seminars for helpful comments. Schorfheide 
acknowledges financial support from the National Science Foundation under Grant SES 1851634. 
The views expressed in this paper are those of the authors and do not necessarily reflect the 
position of the Federal Reserve Bank of New York, the Federal Reserve Board, the Federal 
Reserve System, or the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2020 by Michael D. Cai, Marco Del Negro, Edward P. Herbst, Ethan Matlin, Reca Sarfati, and 
Frank Schorfheide. All rights reserved. Short sections of text, not to exceed two paragraphs, may 
be quoted without explicit permission provided that full credit, including © notice, is given to the 
source.



Online Estimation of DSGE Models
Michael D. Cai, Marco Del Negro, Edward P. Herbst, Ethan Matlin, Reca Sarfati, and Frank
Schorfheide
NBER Working Paper No. 26826
March 2020
JEL No. C11,C32,C53,E32,E37,E52

ABSTRACT
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increasing the prior variance does not lead to a deterioration of forecast accuracy.
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1 Introduction

The goal of this paper is to provide a framework for performing “online” estimation of

Bayesian dynamic stochastic general equilibrium (DSGE) models using sequential Monte

Carlo (SMC) techniques. We borrow the term online estimation from the statistics and

machine-learning literature to describe the task of re-estimating a model frequently as new

data become available. This is standard practice in central bank settings, where models may

be re-estimated every one to three months for each policy-briefing cycle or after each data

release. The conventional approach—to run a completely new estimation to update the model

with new information—is time-consuming and can require considerable user supervision.

Moreover, as macroeconomic models become more complex, e.g., the current vintage of

heterogeneous-agent New Keynesian models, even seemingly generous time constraints may

become binding. Online estimation is also important for academic research, where economists

often compare predictions from a variety of models in pseudo-out-of-sample forecast exercises

that require recursive estimation.

In both policy and academic settings, then, there is a need for reliable and efficient

estimation algorithms. In this paper, we propose a generic SMC algorithm for online estima-

tion which minimizes computational time but maintains the ability to handle complex—i.e.,

multimodal—posterior distributions with minimal user monitoring. In an empirical section,

we verify the properties of the algorithm by estimating a suite of DSGE models. In an appli-

cation prototypical for both policy institutions and academic research, we use the algorithm

to generate recursive forecasts using these DSGE models.

In online estimation applications of SMC methods, parameter estimates based on data

available in the previous period will be adjusted to capture the additional information con-

tained in the observations from the current period. However, a similar technique can be used

to transform estimates of, say, a linearized DSGE model, into estimates of a version of the

model that has been solved with nonlinear techniques and shares the same set of parame-

ters. Thus, our framework should be of value to anyone interested in estimating complex

models in a stepwise fashion, either by sequentially increasing the sample information or by

mutating preliminary estimates from a relatively simple (linear dynamics, heterogeneous-

agent models with a coarse approximation) model, which can be computed quickly, into

estimates of a more complex model (nonlinear dynamics, heterogeneous-agent models with

a finer approximation), which would take a long time to compute from scratch.
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SMC methods have been traditionally used to solve nonlinear filtering problems, an

example being the bootstrap particle filter of Gordon et al. (1993). Subsequently, Chopin

(2002) showed how to adapt particle filtering techniques to conduct posterior inference for a

static parameter vector. The first paper that applied SMC techniques to posterior inference

for the parameters of a (small-scale) DSGE model was Creal (2007). Subsequent work by

Herbst and Schorfheide (2014, 2015) fine-tuned the algorithm so that it could be used for

the estimation of medium- and large-scale models.

In order to frame the paper’s contributions, a brief summary of how SMC works is in

order. SMC algorithms approximate a target posterior distribution by creating intermediate

approximations to a sequence of bridge distributions, indexed in this paper by n. At each

stage, the current bridge distribution is represented by a swarm of so-called particles. Each

particle is composed of a value and a weight. Weighted averages of the particle values

converge to expectations under the stage-n distribution. The transition from stage n− 1 to

n involves changing the particle weights and values so that the swarm adapts to the new

distribution. Typically, these bridge distributions are composed either using the full-sample

likelihood (likelihood tempering)—generated by raising this likelihood function to the power

of φn, where φn increases from zero to one—or by sequentially adding observations to the

likelihood function (data tempering). While the data tempering approach seems most natural

for an online estimation algorithm, previous work (Herbst and Schorfheide, 2015) has shown

that it may perform poorly relative to likelihood tempering.

This paper makes three main contributions. First, under likelihood tempering, we replace

a predetermined (or fixed) tempering schedule {φn} for the DSGE model likelihood function

by a schedule that is constructed adaptively. The adaptive tempering schedule chooses

the amount of information that is added to the likelihood function in stage n to achieve a

particular variance of the particle weights. While adaptive tempering schedules have been

used in the statistics literature before, e.g., Jasra et al. (2011), their use for the estimation

of DSGE model parameters is new. This kind of adaptation is an important prerequisite for

efficient online estimation, as it avoids unnecessary computations. Our adaptive schedules

are calibrated by a single tuning parameter that controls the desired variance of the particle

weights. We assess how this tuning parameter affects the accuracy-runtime trade-off for the

algorithm.

Second, we modify the SMC algorithm so that the initial particles are drawn from a previ-

ously computed posterior distribution instead of the prior distribution. This initial posterior

can result from estimating the model on a shorter sample or a simpler version of the same
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model (e.g., linear versus non-linear, as discussed above) on the full sample. In the former

case, our approach can be viewed as a form of generalized data tempering. Our approach is

more general in that it allows users to add information from fractions of observations and ac-

commodates data revisions, which are pervasive in macro applications. When combined with

adaptive tempering, this generalized approach avoids the pitfalls associated with standard

data tempering. This is because in the periods in which the new observation(s) are quite

informative and shift the posterior distribution substantially, the algorithm will use a larger

number of intermediate stages to reach the new posterior to maintain accuracy. Whereas in

other periods where the posterior distribution remains essentially unchanged, the number of

intermediate stages are kept small to reduce runtime.

Third, we contribute to the literature that assesses the real-time pseudo-out-of-sample

forecast performance of DSGE models. Here real-time means that for a forecast using a sam-

ple ending at time t, the data vintage used to estimate the model is one that would have been

available to the econometrician at the time. Pseudo-out-of-sample means that the forecasts

were produced ex-post.1 We use the proposed SMC techniques to conduct online estimation

of the Smets and Wouters (2007) model and a version of this model with financial frictions.

Our forecast evaluation exercises extend previous results in Del Negro and Schorfheide (2013)

and Cai et al. (2019) which were conducted with parameter estimates from the widely-used

random walk Metropolis Hastings (RWMH) algorithm. In particular, we study the effects of

reducing the informativeness of the prior distribution on forecasting performance. Despite

the emergence of multiple modes in the posterior distribution, our SMC-based results show

that the large increase in the prior standard deviation has surprisingly small effects on fore-

casting accuracy, thereby debunking the notion that priors in DSGE models are chosen to

improve the model’s predictive ability.

The remainder of this paper is organized as follows. In Section 2 we outline the basic

structure of an SMC algorithm designed for posterior inference on a time-invariant parameter

vector θ. We review different tempering approaches and present an algorithm for the adaptive

choice of the tempering schedule. Section 3 provides an overview of the DSGE models that

are estimated in this paper. In Section 4 we study various dimensions of the performance

of SMC algorithms: we assess the accuracy and runtime tradeoffs of adaptive tempering

schedules, we document the benefits of generalized data tempering for online estimation,

and we demonstrate the ability of SMC algorithms to accurately approximate multimodal

1Cai et al. (2019) provide a genuine real-time forecast evaluation that uses the NY Fed DSGE model’s

forecasts.



4

posteriors. Section 5 contains various pseudo-out-of-sample forecasting assessments for mod-

els that are estimated by SMC. Finally, Section 6 concludes. An Online Appendix provides

further details on model specifications, prior distributions, and computational aspects. It

also contains additional empirical results.

2 Adaptive SMC Algorithms for Posterior Inference

SMC techniques to generate draws from posterior distributions of a static parameter θ are

emerging as an attractive alternative to MCMC methods. SMC algorithms can be easily

parallelized and, properly tuned, may produce more accurate approximations of posterior

distributions than MCMC algorithms. Chopin (2002) showed how to adapt particle filtering

techniques to conduct posterior inference for a static parameter vector. Textbook treatments

of SMC algorithms are provided, for instance, by Liu (2001) and Cappé et al. (2005). This

section reviews the standard SMC algorithm (Section 2.1), contrasts our generalized tem-

pering approach with existing alternatives (Section 2.2), and finally describes our adaptive

tempering algorithm (Section 2.3).

The first paper that applied SMC techniques to posterior inference in a small-scale DSGE

models was Creal (2007). Herbst and Schorfheide (2014) develop the algorithm further,

provide some convergence results for an adaptive version of the algorithm building on the

theoretical analysis of Chopin (2004), and show that a properly tailored SMC algorithm

delivers more reliable posterior inference for large-scale DSGE models with a multimodal

posterior than the standard RWMH algorithm. Creal (2012) provides a recent survey of

SMC applications in econometrics. Durham and Geweke (2014) show how to parallelize a

flexible and self-tuning SMC algorithm for the estimation of time series models on graphical

processing units (GPU). The remainder of this section draws heavily from the more detailed

exposition in Herbst and Schorfheide (2014, 2015).

2.1 SMC Algorithms for Posterior Inference

SMC combines features of classic importance sampling and modern MCMC techniques. The

starting point is the creation of a sequence of intermediate or bridge distributions {πn(θ)}Nφn=0

that converge to the target posterior distribution, i.e., πNφ(θ) = π(θ). At any stage the
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(intermediate) posterior distribution πn(θ) is represented by a swarm of particles {θin,W i
n}Ni=1

in the sense that the Monte Carlo average

h̄n,N =
1

N

N∑
i=1

W i
nh(θi)

a.s.−→ Eπn [h(θn)] (1)

as N −→ ∞, for each n = 0, . . . , Nφ. The bridge distributions are posterior distributions

constructed from stage-n likelihood functions:

πn(θ) =
pn(Y |θ)p(θ)∫
pn(Y |θ)p(θ)dθ

(2)

with the convention that p0(Y |θ) = 1, i.e., the intial particles are drawn from the prior, and

pNφ(Y |θ) = p(Y |θ). The actual form of the likelihood sequences depend on the tempering

approach and will be discussed in Section 2.2 below. We adopt the convention that the

weights W i
n are normalized to average to one.

The SMC algorithm proceeds iteratively from n = 0 to n = Nφ. Starting from stage

n − 1 particles {θin−1,W
i
n−1}Ni=1 each stage n of the algorithm targets the posterior πn and

consists of three steps: correction, that is, reweighting the stage n− 1 particles to reflect the

density in iteration n; selection, that is, eliminating a highly uneven distribution of particle

weights (degeneracy) by resampling the particles; and mutation, that is, propagating the

particles forward using a Markov transition kernel to adapt the particle values to the stage

n bridge density.

Algorithm 1 (Generic SMC Algorithm).

1. Initialization. (n = 0 and φ0 = 0.) Draw the initial particles from the prior: θi1
iid∼

p(θ) and W i
1 = 1, i = 1, . . . , N .

2. Recursion. For n = 1, . . . , Nφ,

(a) Correction. Reweight the particles from stage n− 1 by defining the incremental

weights

w̃in =
pn(Y |θin−1)

pn−1(Y |θin−1)
(3)

and the normalized weights

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, . . . , N. (4)
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(b) Selection (Optional). Resample the swarm of particles, {θin−1, W̃
i
n}Ni=1, and

denote resampled particles by {θ̂in,W i
n}Ni=1, where W i

n = 1 for all i.

(c) Mutation. Starting from θ̂in, propagate the particles {θ̂in,W i
n} via NMH steps

of a Metropolis-Hastings (MH) algorithm with transition density Kn(θ|θ̃; ζn) and

stationary distribution πn(θ). Note that the weights are unchanged, and denote

the mutated particles by {θin,W i
n}Ni=1.

An approximation of Eπn [h(θ)] is given by

h̄n,N =
1

N

N∑
i=1

h(θin)W i
n. (5)

3. For n = Nφ (φNφ = 1) the final importance sampling approximation of Eπ[h(θ)] is

given by:

h̄Nφ,N =
N∑
i=1

h(θiNφ)W i
Nφ
. (6)

Because we are using a proper prior, we initialize the algorithm with iid draws from the

prior density p(θ). The correction step is a classic importance sampling step, in which the

particle weights are updated to reflect the stage n distribution πn(θ). The selection step is

optional. On the one hand, resampling adds noise to the Monte Carlo approximation, which

is undesirable. On the other hand, it equalizes the particle weights, which increases the

accuracy of subsequent importance sampling approximations. The decision of whether or

not to resample is typically based on a threshold rule for the variance of the particle weights

which can be transformed into an effective particle sample size:

ÊSSn = N
/( 1

N

N∑
i=1

(W̃ i
n)2

)
. (7)

If the particles have equal weights, then ÊSSn = N . If one particle has weight N and all

other particles have weight 0, then ÊSSn = 1. These are the upper and lower bounds for the

effective sample size. To balance the trade-off between adding noise and equalizing particle

weights, the resampling step is typically executed if ÊSSn falls below a threshold N , e.g.,

N/2 or N/3. An overview of specific resampling schemes is provided, for instance, in the

books by Liu (2001) or Cappé et al. (2005) (and references cited therein). We are using

systematic resampling in the applications below.

The mutation step changes the particle values. In the absence of the mutation step, the

particle values would be restricted to the set of values drawn in the initial stage from the
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prior distribution. This would clearly be inefficient, because the prior distribution is typically

a poor proposal distribution for the posterior in an importance sampling algorithm. As the

algorithm cycles through the Nφ stages, the particle values successively adapt to the shape

of the posterior distribution. This is the key difference between SMC and classic importance

sampling. The transition kernel Kn(θ|θ̃; ζn) is designed to have the following invariance

property:

πn(θn) =

∫
Kn(θn|θ̂n; ζn)πn(θ̂n)dθ̂n. (8)

Thus, if θ̂in is a draw from πn, then so is θin. The mutation step can be implemented by

using one or more steps of a MH algorithm. The probability of mutating the particles can

be increased by blocking the elements of the parameter vector θ or by iterating the MH

algorithm over multiple steps. The vector ζn summarizes the tuning parameters of the MH

algorithm.

The SMC algorithm produces as a by-product an approximation of the marginal likeli-

hood. Note that

1

N

N∑
i=1

w̃inW̃
i
n−1 ≈

∫
pn(Y |θ)
pn−1(Y |θ)

[
pn−1(Y |θ)p(θ)∫
pn−1(Y |θ)p(θ)dθ

]
dθ =

∫
pn(Y |θ)p(θ)dθ∫
pn−1(Y |θ)p(θ)dθ

. (9)

Thus, it can be shown that the approximation

p̂(Y ) =

Nφ∏
n=1

(
1

N

N∑
i=1

w̃inW
i
n−1

)
(10)

converges almost surely to p(Y ) as the number of particles N −→ ∞; see, for instance,

Herbst and Schorfheide (2014).

2.2 Likelihood, Data, and Generalized Tempering

The stage-n likelihood functions are generated in different ways. Under likelihood tempering,

one takes power transformations of the entire likelihood function:

pn(Y |θ) = [p(Y |θ)]φn , φn ↑ 1, (11)

The advantage of likelihood tempering is that one can make, through the choice of φn,

consecutive posteriors arbitrarily “close” to one another. Under data tempering, sets of

observations are gradually added to the likelihood function, that is,

pn(Y |θ) = p(y1:bφnT c|θ), φn ↑ 1, (12)
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where bxc is the largest integer that is less or equal to x. Data tempering is particularly

attractive in time series applications. But because individual observations are not divisible,

the data tempering approach is less flexible. Though the data tempering approach might

seem well suited for online estimation, in practice it performs poorly because adding an

observation can change the posterior substantially. Moreover, conventional data tempering

is not easily adapted to revised data.

Our approach generalizes both likelihood and data tempering as follows. Imagine one

has draws from the posterior

π̃(θ) ∝ p̃(Ỹ |θ)p(θ), (13)

where the posterior π̃(θ) differs from the posterior π(θ) because either the sample (Y versus

Ỹ ), or the model (p(Y |θ) versus p̃(Ỹ |θ)), or both are different.2 We define the stage-n

likelihood function as:

pn(Y |θ) = [p(Y |θ)]φn [p̃(Ỹ |θ)]1−φn , φn ↑ 1. (14)

First, if one sets p̃(·) = 1, then (14) is identical to likelihood tempering. Second, suppose

one sets p̃(·) = p(·), Y = y1:T , and Ỹ = y1:T1 where T > T1. Then, tempering this likelihood

allows for a gradual transition from p(y1:T1|θ) to p(y1:T |θ) as φn increases from 0 to 1. This

leads to a generalized version of data tempering in which we can add informational content

to the likelihood that corresponds to a fraction of an observation yt. This may be important

if the additional sample yT1+1:T substantially affects the likelihood (e.g., yT1+1:T includes the

Great Recession).

Third, by allowing Y to differ from Ỹ , we can accommodate data revisions between time

T1 and T . For online estimation, one can use the most recent estimation to jump-start a

new estimation on revised data, without starting from scratch. Finally, by allowing p(·) and

p̃(·) to differ, one can transition between the posterior distribution of two models that share

the same parameters, e.g., DSGE models solved by a first- and second-order perturbation

method. We will evaluate the accuracy of the generalized tempering approach in Section 4

and use it in the real-time forecast evaluation of Section 5.

2.3 Adaptive Algorithms

The implementation of the SMC algorithm requires the choice of several tuning constants.

First, the user has to choose the number of particles N . As shown in Chopin (2004),

2It is straightforward to generalize our approach to also encompass differences in the prior.
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Monte Carlo averages computed from the output of the SMC algorithm satisfy a CLT as

the number of particles increases to infinity. This means that the variance of the Monte

Carlo approximation decreases at the rate 1/N . Second, the user has to determine the

tempering schedule φn and the number of bridge distributions Nφ. Third, the threshold

level N for ÊSSn needs to be set to determine whether the resampling step should be

executed in iteration n. Finally, the implementation of the mutation step requires the choice

of the number of MH steps, NMH , the number of blocks into which the parameter vector

θ is partitioned, Nblocks, and the parameters ζn that control the Markov transition kernel

Kn(θn|θ̂in; ζn).

Our implementation of the algorithm starts from a choice ofN , N , NMH , andNblocks. The

remaining features of the Algorithm are determined adaptively. As in Herbst and Schorfheide

(2015), we use a RWMH algorithm to implement the mutation step. The proposal density

takes the form N(θ̂i, c2
n, Σ̃n). The scaling constant c and the covariance matrix Σ̃n can be

easily chosen adaptively; see Herbst and Schorfheide (2015, Algorithm 10). Based on the

MH rejection frequency, c can be adjusted to achieve a target rejection rate of approximately

25-40%. For Σ̃n one can use an approximation of the posterior covariance matrix computed

at the end of the stage n correction step.

In the current paper, we will focus on the adaptive choice of the tempering schedule,

building on work by Jasra et al. (2011), Del Moral et al. (2012), Schäfer and Chopin (2013),

Geweke and Frischknecht (2014), and Zhou et al. (2015). The key idea is to choose φn to

target a desired level ÊSS
∗
n. Roughly, the closer the desired ÊSS

∗
n to the previous ÊSSn−1,

the smaller the increment φn− φn−1 and therefore the information increase in the likelihood

function. In order to formally describe the choice of φn, we define the functions:

wi(φ) = [p(Y |θin−1)]φ−φn−1 , W̃ i
n(φ) =

wi(φ)W i
n−1

1
N

N∑
i=1

wi(φ)W i
n−1

, ÊSS(φ) = N
/( 1

N

N∑
i=1

(W̃ i
n(φ))2

)

We will choose φ to target a desired level of ESS:

f(φ) = ÊSS(φ)− αÊSSn−1 = 0, (15)

where α is a tuning constant that captures the targeted reduction in ESS. For instance, if

α = 0.95, then the algorithm allows for a 5 percent reduction in the effective sample size at

each stage. The algorithm can be summarized as follows:
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Algorithm 2 (Adaptive Tempering Schedule).

1. If f(1) ≥ 0, then set φn = 1.

2. If f(1) < 0, let φn ∈ (φn−1, 1) be the smallest value of φn such that f(φn) = 0.

It is important to note that Algorithm 2 is guaranteed to generate a “well-formed”—

monotonically increasing—tempering schedule. To see this, suppose that φn−1 < 1. First,

note that f(φn−1) = (1 − α)ÊSSn−1 > 0. Second, if f(1) ≥ 0, we set φn = 1 > φn−1 and

the algorithm terminates. Alternatively, if f(1) < 0, then by continuity of f(φ) and the

compactness of the interval [φn−1, 1], there exists at least one root of f(φ) = 0. We define φn

to be the smallest one. The formulation in Algorithm 2 is also attractive because the values

of the likelihood function used in (15) have already been stored in memory. This means that

even exhaustive root-finding methods will typically find φn quickly.3

3 DSGE Models

In the subsequent applications we consider three DSGE models. The precise specifications

of these models, including their linearized equilibrium conditions, measurement equations,

and prior distributions, are provided in Section B of the Online Appendix.

The first model is a small-scale New Keynesian DSGE model that has been widely

studied in the literature (see Woodford, 2003, or Gaĺı, 2008, for textbook treatments). The

particular specification used in this paper is based on the one in An and Schorfheide (2007);

henceforth, AS. The model economy consists of final goods producing firms, intermediate

goods producing firms, households, a central bank, and a fiscal authority. Labor is the only

factor of production. Intermediate goods producers act as monopolistic competitors and

face downward sloping demand curves for their products. They face quadratic costs for

adjusting their nominal prices, which generates price rigidity and real effects of changes in

monetary policy. The model solution can be reduced to three key equations: a consumption

Euler equation, a New Keynesian Phillips curve, and a monetary policy rule. Fluctuations

are driven by three exogenous shocks and the model is estimated based on output growth,

inflation, and federal funds rate data.

3A refined version of Algorithm 2 that addresses potential numerical challenges in finding the root of f(φ)

is provided in Section A.2 of the Online Appendix.
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The second model is the Smets and Wouters (2007) model, henceforth SW, which is

based on earlier work by Christiano et al. (2005) and Smets and Wouters (2003), and is the

prototypical medium-scale New Keynesian model. In the SW model, capital is a factor of

intermediate goods production and in addition to price stickiness, the model also features

nominal wage stickiness. In order to generate a richer autocorrelation structure, the model

includes investment adjustment costs, habit formation in consumption, and partial dynamic

indexation of prices and wages to lagged values. The SW model is estimated using the

following seven macroeconomic time series: output growth, consumption growth, investment

growth, real wage growth, hours worked, inflation, and the federal funds rate.4

The third DSGE model, SWFF, is obtained by extending the SW model in two dimen-

sions. First, building on work by Bernanke et al. (1999b), Christiano et al. (2003), De Graeve

(2008), and Christiano et al. (2014) we add financial frictions to the SW model. Banks col-

lect deposits from households and lend to entrepreneurs who use these funds as well as their

own wealth to acquire physical capital, which is rented to intermediate goods producers.

Entrepreneurs are subject to idiosyncratic disturbances that affect their ability to manage

capital. Their revenue may thus be too low to pay back the bank loans. Banks protect them-

selves against default risk by pooling all loans and charging a spread over the deposit rate.

This spread varies exogenously due to changes in the riskiness of entrepreneurs’ projects and

endogenously as a function of the entrepreneurs’ leverage. In estimating the model we use

the Baa-10-year Treasury spread as the observable corresponding to this spread. Second,

we include a time-varying target inflation rate to capture low frequency movements of in-

flation. To anchor the estimates of the target inflation rate, we include long-run inflation

expectations into the set of observables.5

4 SMC Estimation at Work

We now illustrate various dimensions of the performance of the SMC algorithm. Section 4.1

documents the shape of the adaptive tempering schedule as well as speed-versus-accuracy

trade-offs when tuning the adaptive tempering. Section 4.2 uses generalized tempering for

4To generate forecasts between 2009 and 2015 that do not violate the zero lower bound constraint on

nominal interest rates, we add anticipated monetary policy shocks to the interest rate feedback rules and

include (survey) expectations of future interest rates at the forecast origin as observables.
5Del Negro and Schorfheide (2013) showed that introducing a time-varying inflation target into the SW

model improves inflation forecasts.
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the online estimation of DSGE models and document its runtime advantages. Finally, in

Section 4.3 we show that the SMC algorithm is able to reveal multimodal features of DSGE

model posteriors.

4.1 Adaptive Likelihood Tempering

We described in Section 2.3 how the tempering schedule for the SMC algorithm can be

generated adaptively. The tuning parameter α controls the desired level of reduction in ESS

in (15). The closer α is to one, the smaller the desired ESS reduction, and therefore the

smaller the change in the tempering parameter and the larger the number of tempering steps.

We will explore the shape of the adaptive tempering schedule generated by Algorithm 2, the

runtime of SMC Algorithm 1, and the accuracy of the resulting Monte Carlo approximation

as a function of α. Rather than reporting results for individual DSGE model parameters,

we consider the standard deviation of the log marginal data density (MDD) defined in (10),

computed across multiple runs of the SMC algorithm, as a measure of accuracy of the Monte

Carlo approximation.

Table 1: Configuration of SMC Algorithm for Different Models

AS SW

Number of particles N = 3, 000 N = 12, 000

Fixed tempering schedule Nφ = 200, λ = 2 Nφ = 500, λ = 2.1

Mutation Nblocks = 3 Nblocks = 3

Selection/Resampling N = N/2 N = N/2

We consider the AS and SW models, estimated based on data from 1966:Q4 to 2016:Q3.6

In addition to the adaptive tempering schedule, we also consider a fixed tempering schedule

of the form

φn =

(
n

Nφ

)λ
. (16)

This schedule has been used in the SMC applications in Herbst and Schorfheide (2014) and

Herbst and Schorfheide (2015). The user-specified tuning parameters for the SMC algorithm

are summarized in Table 1.

6For the estimation of both models, we use a pre-sample from 1965:Q4 to 1966:Q3.
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Table 2: AS Model: Fixed and Adaptive Tempering Schedules, NMH = 1

Fixed α =0.90 α =0.95 α =0.97 α =0.98

Mean log(MDD) -1032.60 -1034.21 -1032.48 -1032.07 -1031.92

StdD log(MDD) 0.76 1.48 0.61 0.32 0.22

Schedule Length 200.00 112.17 218.80 350.06 505.46

Resamples 14.63 15.37 15.03 14.99 14.00

Runtime [Min] 1.29 0.88 1.53 2.21 3.13

Notes: Results are based on Nrun = 400 runs of the SMC algorithm. We report averages across runs for the
runtime, schedule length, and number of resampling steps.

Table 3: SW Model: Fixed and Adaptive Tempering Schedules, NMH = 1

Fixed α =0.90 α =0.95 α =0.97 α =0.98

Mean log(MDD) -1178.43 -1186.23 -1180.04 -1178.31 -1177.72

StdD log(MDD) 1.34 3.07 1.53 1.03 1.01

Schedule Length 500.00 200.53 389.75 618.53 887.42

Resamples 26.75 28.09 27.25 26.33 25.09

Runtime [Min] 80.23 31.36 61.29 97.79 139.99

Notes: Results are based on Nrun = 200 runs of the SMC algorithm. We report averages across runs for the
runtime, schedule length, and number of resampling steps.

Results for the AS model based on adaptive likelihood tempering, see (11), are summa-

rized in Table 2. We also report results for the fixed tempering schedule (16) in the second

column of the table. For now we set NMH = 1. The remaining columns show results for

the adaptive schedule with different choices of the tolerated ESS reduction α. The adaptive

schedule length is increasing from approximately 112 stages for α = 0.90 to 506 stages for

α = 0.98. As mentioned above, the closer α is to one, the smaller is the increase in φn.

This leads to a large number of stages which, in turn, increases the precision of the Monte

Carlo approximation. The standard deviation of log p̂(Y ) is 1.54 for α = 0.9 and 0.21 for

α = 0.98. The mean of the log MDD is increasing as the precision increases. This is the

result of Jensen’s inequality. MDD approximations obtained from SMC algorithms tend to

be unbiased, which means that log MDD approximations exhibit a downward bias.
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Figure 1: Tempering Schedules, NMH = 1.
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Notes: The figure depicts (pointwise) median φn values across Nrun = 400 for AS and Nrun = 200 for SW.
The solid lines represent the fixed schedule, parameterized according to Table 1. The dashed lines represent
a range of adaptive schedules: α = 0.9, 0.95, 0.97, 0.98.

The runtime of the algorithm increases approximately linearly in the number of stages

since each stage takes approximately the same amount of time. The number of times that the

selection step is executed (“resamples” in the table) is approximately constant as a function

of α. However, because Nφ is increasing, the fraction of stages at which the particles are

resampled decreases from 14% to 3%.7

In addition to the AS model, we also evaluate the posterior of the SW model using

the SMC algorithm with adaptive likelihood tempering. Results are provided in Table 3.

Because the dimension of the parameter space of the SW model is much larger than that of

the AS model, we are using more particles and multiple blocks in the mutation step when

approximating its posterior (see Table 1). For a given α, the log MDD approximation for SW

is less accurate than for AS, which is consistent with the SW model having more parameters

that need to be integrated out and a less regular likelihood surface. In general, the results

for the SW are qualitatively similar to the ones reported for the AS model in Table 2.

In Figure 1 we plot the fixed and adaptive tempering schedules for both models. All of the

adaptive schedules are convex. Very little information, less than under the fixed schedule, is

added to the likelihood function in the early stages, whereas a large amount of information is

added during the later stages. This is consistent with the findings in Herbst and Schorfheide

(2014, 2015) who examined the performance of the SMC approximations under the fixed

7Dividing the number of resamples by schedule length.
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Figure 2: Trade-Off Between Runtime and Accuracy – Multiple Metropolis-Hastings Steps
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schedule (16) for various values of λ. A primary advantage of using an adaptive tempering

schedule rather than fixed is the savings in “human-time” corresponding to fewer tuning

parameters. While there may be an “optimal” fixed schedule for any given model and data,

to find the best choice of the number of stages Nφ and the tempering schedule shape λ would

require a great deal of experimentation.

Figure 2 graphically depicts time-accuracy curves for the two models. The curves for

NMH = 1 are constructed from the standard deviation and runtime numbers reported in

Tables 2 and 3. The curves are convex for both models. For NMH = 1, reducing α from 0.95

to 0.9 leads to a drastic reduction in the accuracy of the MDD approximation, while the

time savings are only modest. The accuracy-runtime pairs for the fixed tempering schedules

(not shown in the figure) essentially lie on the curves. For the AS model it is on the segment

between α = 0.9 and α = 0.95, whereas for the SW model it is on the segement between

α = 0.95 and α = 0.97.

In addition to NMH = 1, Figure 2 also shows accuracy-runtime curves for NMH = 3 and

NMH = 5. Recall that the mutation step in the SMC algorithm is necessary for particle values

to adapt to each intermediate bridge distribution. In principle, one step of a Metropolis-

Hastings algorithm is sufficient, because prior to the mutation, the particle swarm already

represents the stage-n distribution. Nonetheless, there is a potential benefit to raising the

number of MH steps: it increases the probability that the particle values do change during
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the mutation. Unfortunately, it also increases the runtime.

According to Figure 2 the gain from increasing NMH is limited. While the trade-off

curves for the two models do shift, for every desirable point on the NMH = 3 and NMH = 5

curves (runtimes between 1 and 3 minutes), there is a point on the NMH = 1 curve that

delivers a similar performance in terms of speed and accuracy. Consider the AS model. The

combination of NMH = 1 and α = 0.98 delivers roughly the same performance as NMH = 3

and α = 0.97. For the former setting we have on average 505 bridge distributions, whereas

under the latter setting we have only 301 bridge distributions. Because the mutation step

is executed for each bridge distribution, adding bridge distributions facilitates the change in

particle values and therefore is to some extent a substitute for increasing the number of MH

steps. For both models, raising NMH from 3 to 5 leads in fact to a (slight) deterioration of

performance.8 In the remainder of the paper we set NMH = 1 and α = 0.98 unless otherwise

noted.

4.2 Generalized Tempering for Online Estimation

To provide a timely assessment of economic conditions and to produce accurate forecasts

and policy projections, econometric modelers at central banks re-estimate their DSGE mod-

els regularly. A key impediment to online estimation of DSGE models with the RWMH

algorithm is that any amendment to the previously-used dataset requires a full re-estimation

of the DSGE model, which can be quite time-consuming and often requires supervision.9

SMC algorithms that are based on data tempering, on the other hand, allow for efficient

online estimation of DSGE models. This online estimation entails combining the adaptive

tempering schedule in Algorithm 2 with the generalized tempering in (14). As mentioned

above, our algorithm is also amenable to data revisions.

Scenario 1. In the following illustration, we partition the sample into two subsamples:

t = 1, . . . , T1 and t = T1 + 1, . . . , T , and allow for data revisions by the statistical agencies

between periods T1 + 1 and T . We assume that the second part of the sample becomes

available after the model has been estimated on the first part of the sample using the data

8Holding α fixed, one would expected that raising NMH from 1 to 3, say, would approximately triple the

runtime because the number of likelihood evaluations increases by a factor of three. Based on Figure 2, that

is not the case. Due to the specifics of the parallelization of the algorithm, each NMH = 3 stage takes only

1.8 times as long as each NMH = 1 stage.
9This is particularly true when the proposal covariance matrix is constructed from the Hessian of the log

likelihood function evaluated at the global mode, which can be very difficult to find.
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vintage available at the time, ỹ1:T1 . Thus, in period T we already have a swarm of particles

{θiT1 ,W
i
T1
}Ni=1 that approximates the posterior

p(θ|ỹ1:T1) ∝ p(ỹ1:T1|θ)p(θ).

Following (14) with Y = y1:T and Ỹ = ỹ1:T1 , we define the stage (n) posterior as

πn(θ) =
p(y1:T |θ)φnp(ỹ1:T1|θ)1−φnp(θ)∫
p(y1:T |θ)φnp(ỹ1:T1|θ)1−φnp(θ)dθ

.

We distinguish notationally between y and ỹ because some observations in the t = 1, . . . , T1

sample may have been revised. The incremental weights are given by

w̃in(θ) = p(y1:T |θ)φn−φn−1p(ỹ1:T1|θ)φn−1−φn

and it can be verified that

1

N

N∑
i=1

w̃inW
i
n−1 ≈

∫
p(y1:T |θ)φnp(ỹ1:T1|θ)1−φnp(θ)dθ∫

p(y1:T |θ)φn−1p(ỹ1:T1|θ)1−φn−1p(θ)dθ
. (17)

Now define the conditional marginal data density (CMDD)

CMDD2|1 =

Nφ∏
n=1

(
1

N

N∑
i=1

w̃i(n)W
i
(n−1)

)
(18)

with the understanding that W i
(0) = WT1 . Because the product of the terms in (17) simplify,

and because φNφ = 1 and φ1 = 0, we obtain:

CMDD2|1 ≈
∫
p(y1:T |θ)p(θ)dθ∫
p(ỹ1:T1|θ)p(θ)dθ

=
p(y1:T )

p(ỹ1:T1)
. (19)

Note that in the special case of no data revisions (ỹ1:T1 = y1:T1) the expression simplifies to

CMDD2|1 ≈ p(yT1+1:T |y1:T1). We consider this case in our simulations below.

We assume that the DSGE model has been estimated using likelihood tempering based

on the sample y1:T1 , where t = 1 corresponds to 1966:Q4 and t = T1 corresponds to 2007:Q1.

The second sample, yT1+1:T , starts in 2007:Q2 and ends in 2016:Q3.10 We now consider

two ways of estimating the log MDD log p(y1:T ). Under full-sample estimation, we ignore

the existing estimate based on y1:T1 and use likelihood tempering based on the full-sample

likelihood p(y1:T |θ). Under generalized tempering, we start from the existing posterior based

10We use a recent data vintage and abstract from data revisions in this exercise.
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Table 4: AS Model: Generalized Tempering, NMH = 1

α =0.90 α =0.95 α =0.97 α =0.98

Mean log(MDD) -1033.95 -1032.54 -1032.06 -1031.93

StdD log(MDD) 1.37 0.61 0.32 0.24

Schedule Length 24.33 47.12 75.74 106.50

Runtime [Min] 0.25 0.48 0.69 0.98

Notes: Results are based on Nrun = 400 runs of the SMC algorithm, starting from particles that represent
p(θ|Y1:T1

). We report averages across runs for the runtime, schedule length, and number of resampling steps.

Table 5: SW Model: Generalized Tempering, NMH = 1

α =0.90 α =0.95 α =0.97 α =0.98

Mean log(MDD) -1188.93 -1182.08 -1180.05 -1178.90

StdD log(MDD) 3.10 1.83 1.11 1.06

Schedule Length 56.60 115.73 194.01 290.74

Runtime [Min] 16.32 33.64 56.79 85.01

Notes: Results are based on Nrun = 200 runs of the SMC algorithm, starting from particles that represent
p(θ|Y1:T1). We report averages across runs for the runtime, schedule length, and number of resampling steps.

on y1:T1 and use generalized data tempering to compute CMDD2|1 in (18). We then calculate

log p(y1:T1) + log CMDD2|1.

Note that our choice of the sample split arguably stacks the cards against the generalized

tempering approach relative to starting from scratch. This is because the second period is

quite different from the first (and therefore the posterior changes quite a bit), as it includes

the Great Recession, the effective lower bound constraint on the nominal interest rate, and

unconventional monetary policy interventions such as large-scale asset purchases and forward

guidance.

We begin with the following numerical illustration for the AS model. For each of the

Nrun = 400 runs of SMC, we first generate the estimate of log p(y1:T1|θ) by likelihood temper-

ing and then continue with generalized tempering to obtain log CMDD2|1. The two numbers

are added to obtain an approximation of log p(y1:T ) that can be compared to the results from

the full-sample estimation reported in Table 2. The results from the generalized tempering

approach are reported in Table 4. Comparing the entries in both tables, note that the mean
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Figure 3: Trade-Off Between Runtime and Accuracy, NMH = 1
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Notes: AS results are based on Nrun = 400 and SW results are based on Nrun = 200 runs of the SMC
algorithm. Yellow squares correspond to generalized tempering and blue circles correspond to full sample
estimation.

and standard deviations (across runs) of the log MDDs are essentially the same. The main

difference is that generalized tempering reduces the schedule length and the runtime by a

factor of roughly 2/3 because it starts from the posterior distribution p(θ|y1:T1).

In Figure 3 we provide scatter plots of average runtime versus the standard deviation

of the log MDD for the AS model and the SW model. The blue circles correspond to full

sample estimation and are identical to the blue circles in Figure 2. The yellow squares

correspond to generalized tempering. As in Table 4, the runtime does not reflect the time it

took to compute p(θ|y1:T1) because the premise of the analysis is that this posterior has been

computed in the past and is available to the user at the time when the estimation sample

is extended by the observations yT1+1:T . For both models, the accuracy of the log MDD

approximation remains roughly the same for a given α when using generalized tempering,

but the reduction in runtime is substantial. To put it differently, generalized tempering shifts

the SMC time-accuracy curve to the left, which of course is the desired outcome.

Scenario 2. Rather than adding observations in a single block, we now add four observations

at a time. This corresponds to a setting in which the DSGE model is re-estimated once a

year, which is a reasonable frequency in central bank environments. More formally, we

partition the sample into the subsamples y1:T1 , yT1+1:T2 , yT2+1:T3 , . . ., where Ts − Ts−1 = 4.

After having approximated the posterior based on observations y1:T1 , we use generalized

tempering to compute the sequence of densities p(y1:Ts) for s = 2, . . . , S. At each step s we
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Figure 4: AS Model: Log MDD Increments log(p(yTs−1+1:Ts|y1:Ts−1))
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Notes: Results are based on Nrun = 200 runs of the SMC algorithm with NMH = 1 and α = 0.98.

initialize the SMC algorithm with the particles that represent the posterior p(θ|y1:Ts−1). To

assess the accuracy of this computation, we repeat it Nrun = 200 times. We fix the tuning

parameter for the adaptive construction of the tempering schedule at α = 0.98. The first

sample, y1:T1 ranges from 1966:Q4 to 1991:Q3, and the last sample ends in 2016:Q3.

Figure 4 depicts the time series of the mean and the standard deviation of the log MDD

increments

log p̂(yTs−1+1:Ts|y1:Ts−1) = log p̂(y1:Ts)− log p̂(y1:Ts−1)

across the 200 SMC runs. The median (across time) of the average (across repetitions) log

MDD increment is -17.6. The median standard deviation of the log MDD increments is 0.02,

and the median of the average run time is 0.11 minutes or 7 seconds. The largest deviation

from these median values occurred during the Great Recession when we added the 2009:Q4

to 2010:Q3 observations to the sample. During this period the log MDD increment was only

-40.5 and the standard deviation jumped up to 0.14 because these four observations lead to

a substantial shift in the posterior distribution. In this period, the run-time of the SMC

algorithm increased to 0.58 minutes, or 35 seconds.

Figure 5 depicts the evolution of posterior means and coverage intervals for two param-

eters, τ and σR (the inverse intertemporal elasticity of substitution and and the standard

deviation of shocks to the interest rate, respectively.) The τ sequence exhibits a clear blip in

2009, which coincides with the increased run time of the algorithm. Most of the posteriors

exhibit drifts rather than sharp jumps and the time-variation in the posterior mean is gen-



21

Figure 5: AS Model: Evolution of Posterior Means and Coverage Bands
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Notes: Sequence of posterior means (red line) and 90% coverage bands black lines. The dashed line indicates
the temporal average of the posterior means. We use NMH = 1 and α = 0.98 for the SMC algorithm.

erally small compared to the overall uncertainty captured by the coverage bands. Overall,

generalized tempering provides a framework for online estimation of DSGE models that is

substantially more acccurate than simple data tempering, at little additional computational

cost, even when the additional data substantially change the posterior. Importantly, gener-

alized tempering can also seemlessly handle the data revisions inherent in macroeconomic

time series.

4.3 Exploring Multimodal Posteriors

An important advantage of SMC samplers over standard RWMH samplers is their ability to

characterize multimodal posterior distributions. Multimodality may arise because the data

are not informative enough to be able to disentangle internal versus external propagation

mechanisms, e.g., Calvo price and wage stickiness and persistence of exogenous price and

wage markup shocks. Herbst and Schorfheide (2014) provided an example of a multimodal

posterior distribution obtained in a SW model that is estimated under a diffuse prior distri-

bution. Below, we document that a multimodal posterior may also arise if the SW model is

estimated on a shorter sample with the informative prior used by Smets and Wouters (2007)

originally. Capturing this bimodality correctly will be important for the accurate computa-

tion of predictive densities that are generated as part of the real-time forecast applications

in Section 5.
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Figure 6: SW Model: Posterior Contours for Selected Parameter Pairs
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Notes: Estimation sample is 1960:Q1 to 1991:Q3. We use NMH = 1 and α = 0.98 for the SMC algorithm.
Plots show a two-dimensional visualization of the full-dimension joint posterior.

Figure 6 depicts various marginal bivariate posterior densities for parameters of the SW

model estimated based on a sample from 1960:Q1 to 1991:Q3.11 The plots in the left column

11For these results we match the sample used in Section 5, where we discuss the predictive ability of the

various DSGE models. See footnote 13 for a description of why the samples used in Sections 4.1 and 4.2
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of the figure corresponds to the “standard” prior for the SW model. The joint posteriors for

the parameters ιp and ρλf (weight on the backward-looking component in the New Keynesian

price Phillips curve and persistence of price markup shock) on the one hand, and h and ρλf

(the former determines the degree of habit formation in consumption) on the other hand,

exhibit clear bimodal features, albeit one mode dominates the other. For the parameter

pair ιp and ηgz (the loading of government spending on technology shock innovations), the

bimodality is less pronounced.

The right column of Figure 6 shows posteriors for the same estimation sample but the

“diffuse” prior of Herbst and Schorfheide (2014). This prior is obtained by increasing the

standard deviations for parameters with marginal Normal and Gamma distributions by a

factor of three and using uniform priors for parameters defined on the unit interval.12 Under

the diffuse prior, the multimodal shapes of the bivariate posteriors are more pronounced and

for the first two parameter pairs both modes are associated with approximately the same

probability mass. Thus, using a sampler that correctly captures the non-elliptical features of

the posterior is essential for valid Bayesian inference and allows researchers to estimate DSGE

models under less informative priors that have been traditionally used in the literature. In

Section 5.3 we will examine the forecasting performance of the SW model under the diffuse

prior.

5 Predictive Density Evaluations

In this section we compare the forecast performance of two DSGE models, one without

(SW) and one with (SWFF) financial frictions. We focus on log predictive density scores, a

widely-used criterion to compare density forecasts across models (see Del Negro et al., 2016,

and Warne et al., 2017, in the context of DSGE model forecasting), rather than root-mean-

squared errors, the standard metric for point forecast evaluation used in the literature. We

add to the existing literature by studying these models’ predictive ability under a prior that

is much more diffuse than the one typically used. For density forecast evaluation an accurate

characterization of the posterior distribution is even more important than for point forecasts.

It is clear from the results in Section 4.3 that SMC techniques are necessary for this task,

differ slightly from the sample in Section 5.
12The prior on the shock standard deviations is the same for the diffuse and standard prior, as this prior

is already very loose under the standard specification (an inverse Gamma with only 2 degrees of freedom).

Table A-2 of the Online Appendix describes in detail both the standard and the diffuse priors.
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given the severe multimodalities present in the posterior especially under the diffuse prior.

We therefore apply the generalized tempering approach to SMC described in Section 4.2

when estimating recursively these models using real-time data.

5.1 Real-Time Dataset and DSGE Forecasting Setup

This section provides a quick overview of the data series used for the DSGE model estimation,

the process of constructing a real-time dataset, which follows the approach of Edge and

Gürkaynak (2010a) and Del Negro and Schorfheide (2013, Section 4.1), as well as the forecast

setup. Since much of this information is also provided in Cai et al. (2019), we refer to

that paper and to Section B.4 of the Online Appendix for a more detailed discussion. As

mentioned before, the SW model is estimated using data on the growth rate of aggregate

output, consumption, investment, the real wage, hours worked, GDP deflator inflation, and

the Federal funds rate. The SWFF model is estimated on these same observables plus long-

run inflation expectations and the Baa-10-year Treasury spread. All data series start in

1960:Q1 or the first quarter in which the series becomes available.13

The forecast evaluation is based on forecast origins that range from January 1992 (this

is the beginning of the sample used in Edge and Gürkaynak, 2010a, and Del Negro and

Schorfheide, 2013) to January 2017, the last quarter for which eight period-ahead forecasts

could be evaluated against realized data. For each forecast origin, we construct a real-time

dataset that starts in 1960:Q1, using data vintages available on the 10th of January, April,

July, and October of each year, which we obtain from the St. Louis Fed’s ALFRED database.

Our convention, which follows Del Negro and Schorfheide (2013), is to call the end of the

estimation sample T . This is the last quarter for which we have NIPA data, that is, GDP,

the GDP deflator, et cetera. For instance, we use T = 2010:Q4 for forecasts generated using

data available on April 10, 2011. Even though 2011:Q1 has passed, the Q1 NIPA data are

not yet available. We re-estimate the DSGE model parameters once a year with observations

ranging from 1960:Q1 to T , using the January vintages. Because financial data is published

in real-time, we use T + 1 financial information to sharpen our inference on the T + 1 state

13 A careful reader will notice this sample start-date is different than the one used in Sections 4.1 and 4.2

(1964:Q1). In Sections 4.1 and 4.2, we matched the sample used in Herbst and Schorfheide (2014) so that

all series are non-missing. This is required to optimize the Kalman filter algorithm so that it is feasible to

run a large number of estimations; see Herbst (2015). However, in Sections 4.3 and 5 we match the sample

used in Cai et al. (2019), which starts in 1960:Q1.
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of the economy when generating the forecasts. However, the T + 1 financial information is

excluded from the parameter estimation.

We focus on projections that are conditional on external interest rate forecasts follow-

ing Del Negro and Schorfheide (2013, Section 5.4). In order to construct the conditional

projections, we augment the measurement equations by

Re
T+k|T = R∗ + ET [RT+k], k = 1, . . . , K

where Re
T+k|T is the observed k-period-ahead interest rate forecast, ET [RT+k] is the model-

implied interest rate expectation, and R∗ is the steady-state interest rate. The interest rate

expectations observables Re
T+1|T , . . . , R

e
T+K|T come from the Blue Chip Financial Forecasts

(BCFF) forecast released in the first month of quarter T + 1. In order to provide the model

with the ability to accommodate federal funds rate expectations, the policy rule in the

model is augmented with anticipated policy shocks; see Section B in the Online Appendix

for additional details.14

The projections discussed below are also conditional on nowcasts—that is, forecasts

of the current quarter, which we obtain from the Blue Chip Economic Indicators (BCEI)

consensus forecasts—of GDP growth and the GDP deflator inflation. We treat the nowcast

for T +1 as a perfect signal of yT+1. Finally, the forecasts are evaluated using the latest data

vintage, following much of the existing literature on DSGE forecast evaluation. Specifically,

for the results shown below we use the vintage downloaded on April 18, 2019. The predictive

densities for real GDP growth are computed on per capita data.

5.2 Log Predictive Density Scores with Standard Prior

Figure 7 shows the logarithm of the predictive densities for real GDP growth, GDP deflator

inflation, and both variables jointly (left, middle, and right column, respectively) computed

over the full and the post-recession samples for the two DSGE models we are considering:

SW (blue solid lines) and SWFF (red solid lines). Both models are estimated using what we

have referred to as the “standard” prior, that is, the prior used in previous work, which for

most parameters amounts to the prior used in Smets and Wouters, 2007. For each forecast

origin T , the predictive densities for model m are computed for h = 2, 4, 6, and 8 quarters

14As in Del Negro and Schorfheide (2013), but differently from Cai et al. (2019), we do not use the

expanded dataset containing interest rate forecasts in the estimation of the model’s parameters beginning in

2008:Q4—the start of the ZLB period.
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Figure 7: Average Log Predictive Scores for SW vs SWFF
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Note: These panels compare the log predictive densities from the SW DSGE Model (blue diamonds) with the SWFF DSGE
model (red diamonds) averaged over two, four, six, and eight quarter horizons for output growth and inflation individually, and
for both together. The forecasts associated with these predictive densities are generated conditioning on nowcasts and FFR
expectations. In the top row forecast origins from January 1992 to January 2017 only are included in these calculations. In the
bottom row forecast origins from April 2011 to April 2016 only are included in these calculations.

ahead, using the aforementioned information set Imt that includes interest rate projections,

T + 1 nowcasts and T + 1 financial variables.

Before commenting on the results a few details on the computation of the predictive

densities are in order. The objects being forecasted are the h-period averages of the variables

of interest j,

ȳj;T+h,h =
1

h

h∑
s=1

yj;T+s.

While the previous literature on forecasting with DSGE models generally focused on h-period

ahead forecasts of yj;T+h, we choose to focus on averages as they arguably better capture

the relevant object for policy-makers: accurately forecasting inflation behavior over the next

two years is arguably more important than predicting inflation eight quarters ahead. The

time t h-period-ahead posterior predictive density for model m is approximated by

p(ȳj;T+h,h|ImT ,Mm) =
1

N

N∑
i=1

p(ȳj;T+h,h|θi, ImT ,Mm),
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where N is the number of SMC particles and p(ȳj;T+h,h|θi, ImT ,Mm) is the predictive density

conditional on the particle θi (Section A.1 in the Online Appendix provides the computational

details). The objects plotted in Figure 7 are average of the time T log predictive densities

across the sample [T0, T1], namely

1

T1 − T0

T1∑
T=T0

log p(ȳj;T+h,h|ImT ,Mm).

The top row of Figure 7 show that over the full sample the SWFF model performs better

than the SW model regardless of the variable being forecasted, and for any forecast horizon

higher than two quarters (since we are conditioning on nowcasts, the predictive densities for

2 quarters ahead are virtually indistinguishable). Quantitatively, the gaps between the two

models shown in the first row are non-negligible for GDP growth at longer horizons, but very

small for inflation and for inflation and GDP growth jointly. If we convert the difference

in log predicitive densities as posterior odds ratios for the two models, a gap of 2 implies

that model SWFF is about seven times more likely than model SW. If we focus on the post-

recession sample—the sample studied in Cai et al. (2019), which starts in April 2011 and

ends in April 2016—we see that the gap between the two models in terms of output growth

forecasts becomes larger than 4 for any horizon greater than two (see bottom row), implying

posterior odds ratios above fifty to one. In fact, the time series of the log predictive scores

(see Section C.2 of the Online Appendix) shows that the superior forecasting performance

of SWFF is due to better forecasting accuracy from the Great Recession onward.

In Cai et al. (2019) we explain these results in terms of (i) the failure of the SW model

to explain the Great Recession, which affects its forecasting performance thereafter, and

(ii) the so-called “forward guidance puzzle” (Del Negro et al., 2012; Carlstrom et al., 2015).

The latter refers to the fact that rational expectations representative agent models tend to

overestimate the impact of forward guidance policies, an issue particularly severe for the SW

model, leading to projections that were overoptimistic when forward guidance was in place.

5.3 Log Predictive Density Scores with Diffuse Priors

As illustrated in Section 4.3, the prior used in the estimation of DSGE models is often quite

informative, in the sense that it affects the posterior distribution. From an econometric

point of view, informative priors are not necessarily problematic. They may incorporate a

priori information gleaned from other studies; see for instance the discussion in Del Negro
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and Schorfheide (2008). However, in cases in which the information embedded in the priors

is controversial, the use of informative priors has been criticized; see, for instance, Romer

(2016)’s critique of the priors used in Smets and Wouters (2007).

In view of this criticism, it is interesting to examine the effect of relaxing a relatively tight

prior on the forecasting performance of the model. We therefore compute the log predictive

scores also under the diffuse prior described in Section 4.3. We previously only considered a

diffuse prior for the SW model. For parameters that are common to the SW and the SWFF

model we adopt the same diffuse prior as previously used for the SW model. For parameters

that are unique to the SWFF model, we leave the priors unchanged with the exception that

we replace the prior for the autocorrelation of the financial shock by a uniform distribution;

see Table A-2 in the Online Appendix for details.

From a frequentist perspective, increasing the prior variance reduces the bias of the Bayes

estimator while increasing its variability. The net effect on the mean-squared estimation

(and hence forecast) error is therefore ambiguous. In models for which not all parameters

are identified, the prior serves as a “tie-breaker,” and introduces curvature into the posterior

in directions in which the likelihood function is flat. If a prior mainly adds information

where the likelihood is uninformative and parameters are not identified based on the sample

information, then making the prior more diffuse will not have a noticeable effect on the

forecasting performance of DSGE models because it mainly selects among parameterizations

that track the data equally well.

Figure 8 compares the average log predictive scores obtained with the standard (solid

line) and the diffuse (dashed line) prior for the SW (blue, top row) and SWFF (red, bottom

row) DSGE models. The panels in Figure 8 show that the differences in average log predic-

tive scores between the standard and the diffuse prior are generally small, with the largest

differences arising in the SW model. For this model the inflation forecast deteriorates as the

prior becomes more diffuse, while the GDP forecast improves. This result is consistent with

previous findings in the literature. A tight prior on the constant inflation target around 2%

in the SW model is key for estimating a target that is consistent with the low inflation in

the latter part of the sample. If the prior variance is increased, then the posterior mean

shifts closer to the average inflation rate during the estimation period, which is substantially

larger than inflation during and after the mid 1990s.

For the SWFF model replacing the standard prior by the diffuse prior does not lead to

a deterioration of inflation forecasts. The reason for this result is unrelated to the financial
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Figure 8: Comparison of Predictive Densities under Standard and Diffuse Priors
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Note: These panels compare the predictive densities estimated with the standard (solid line) and the diffuse (dashed line)
prior for the SW (blue, top row) and SWFF (red, bottom row) DSGE models. The predictive densities are averaged over two,
four, six, and eight quarter horizons for output growth and inflation individually, and for both together. Forecast origins from
January 1992 to January 2017 only are included in these calculations. The forecasts associated with these predictive densities
are generated conditioning on nowcasts and FFR expectations.

frictions. It is due to the introduction of the time-varying inflation target which adapts to

the drop of inflation in the 1980s and therefore generates inflation forecasts in the 1990s

and 2000s that are not contaminated by the high inflation rates in the 1960s and 1970s.

Overall, the density forecast accuracy of the SWFF is essentially the same under the two

prior distributions.

We conclude this section with a word of caution. The result that the prior specification

has no influence on the forecasting performance, does not imply that the two versions of

the model deliver the same policy predictions and historical shock decompositions. To the

extent that a tighter prior amplifies and downweights competing modes in the likelihood

function—which is apparent from the multi-modal posterior densities plotted in Figure 6—

posterior inference on the relative importance of the endogenous and exogenous propagation

mechanism can be very different. In turn, this can lead to different impulse response func-

tions for structural shocks and the predicted effect of policy interventions may vary across

estimations.
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6 Conclusion

As the DSGE models used by central banks and researchers become more complex, improved

algorithms for Bayesian computations are necessary. This paper provides a framework for

performing online estimation of DSGE models using SMC techniques. Rather than starting

from scratch each time a DSGE model must be re-estimated, the SMC algorithm makes it

possible to mutate and re-weight posterior draws from an earlier estimation so that they

approximate a new posterior based on additional observations that have become available

since the previous estimation. The algorithm minimizes computational time, requires little

user supervision, and can handle the irregular distributions common in the posteriors of

DSGE model parameters. The same approach could also be used to transform posterior

draws for one model into posterior draws for another model that shares the same parameter

space, e.g., a linear and a nonlinear version of a DSGE model.
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Online Appendix

A Computational Details

A.1 Predictive Density Formulas

This Appendix focuses on the computation of h-step predictive densities p(yt:t+h|Imt−1,Mm)

as well as their average over time, p(yt:t+h|Mm). The starting point is the state-space

representation of the DSGE model. The transition equation

st = T (θ)st−1 +R(θ)εt, εt ∼ N(0,Q) (A-1)

summarizes the evolution of the states st. The measurement equation:

yt = Z(θ)st +D(θ), (A-2)

maps the states onto the vector of observables yt, where D(θ) represents the vector of steady

states for these observables. To simplify the notation we omit model superscripts/subscripts

and we dropMm from the conditioning set. We assume that the forecasts are based on the

It−1 information set. Let θ denote the vector of DSGE model parameters. For each draw θi,

i = 1, . . . , N , from the posterior distribution p(θ|It−1), execute the following steps:

1. Evaluate

T (θ),R(θ),Z(θ),D(θ).

2. Run the Kalman filter to obtain st−1|t−1 and Pt−1|t−1.

3. Compute ŝt|t−1 = st|It−1 and P̂t|t−1 = Pt|It−1 as

(a) Unconditional forecasts: ŝt|t−1 = T st−1|t−1, P̂t|t−1 = T Pt−1|t−1T ′ +RQR′.

(b) Semiconditional forecasts (using time t spreads, and FFR): after computing ŝt|t−1

and P̂t|t−1 using the “unconditional” formulas, run time t updating step of Kalman

filter using a measurement equation that only uses time t values of these two

observables.

(c) Conditional forecasts (using GDP, GDP deflator, time t spreads, and FFR): after

computing ŝt|t−1 and P̂t|t−1 using the “unconditional” formulas, run time t up-

dating step of Kalman filter using a measurement equation that only uses time t

values of these four observables.
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4. Compute recursively for j = 1, .., h the objects ŝt+j|t−1 = T st+j−1|t−1, P̂t+j|t−1 =

T Pt+j−1|t−1T ′ +RQR′ and construct the matrices

ŝt:t+k|t−1 =


ŝt|t−1

...

ŝt+k|t−1


and

P̂t:t+k|t−1 =


P̂t|t−1 P̂t|t−1T ′ . . . P̂t|t−1T k

′

T P̂t|t−1 P̂t+1|t−1 . . . P̂t+1|t−1T k−1 ′

...
...

. . .
...

T kP̂t|t−1 T k−1P̂t+1|t−1 . . . P̂t+k|t−1

 .
This leads to: st:t+h|(θ, It−1) ∼ N(ŝt:t+h|t−1, P̂t:t+h|t−1).

5. The distribution of yt:t+h = D̃ + Z̃st:t+h is

yt:t+h|(θ, It−1) ∼ N(D̃ + Z̃ ŝt:t+h|t−1, Z̃P̂t:t+h|t−1Z̃ ′),

where Z̃ = Ih+1 ⊗Z and D̃ = 1h+1 ⊗D (note I1 = 11 = 1)

6. Compute

p(yot:t+h|θ, It−1) = pN(yot:t+h; D̃ + Z̃ ŝt:t+h|t−1, Z̃P̂t:t+h|t−1Z̃ ′), (A-3)

where yot:t+h are the actual observations and pN(x;µ,Σ) is the probability density func-

tion of a N(µ,Σ).

7. For linear functions Fyt:t+h (e.g., four quarter averages, etc.) where F is a matrix of

fixed coefficients the predictive density becomes

p(Fyot:t+h|θ, It−1) = pN(Fyot:t+h;F D̃ + F Z̃ ŝt:t+h|t−1, F Z̃P̂t:t+h|t−1Z̃ ′F ′). (A-4)

In the application we choose the matrix F such that Fyt:t+h = ȳt+h,h =
1

h

h∑
j=1

yt+j and

let

p(ȳot+h,h|It−1) =
1

N

N∑
i=1

p(ȳot+h,h|θi, It−1). (A-5)

Further, we show these densities averaged over a time horizon from T0 to T .

p(ȳot+h,h) =
1

NT

T∑
t=T0

p(ȳot+h,h|It−1). (A-6)
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A.2 Adaptive Tempering Schedule with Incremental Upper Bounds

One practical concern is the roots of the function in the early stages of SMC are located

very close to the lower bound of the proposed interval. This makes the algorithm inefficient

at finding a root, depending on the specified tolerance of convergence. One amendment we

can make to the adaptive algorithm is to find a smart way of proposing “incremental” upper

bounds for this interval so that the roots are more equidistant from each interval bound and

are thus more easily discoverable by the root-finding algorithm.

Algorithm 1 Adaptive Tempering Schedule (with incremental upper bounds)

1: j = 2, n = 2

2: φ1 = 0

3: φ̃ = φ1

4:
~̂
φ = {φ̂1, ...φ̂N−1, φ̂N} . Where φ̂1 = 0 and φ̂N = 1.

5: while φn < 1 do

6: f(φ) = ESS(φ)− αESSn−1

7: while f(φ̃) ≥ 0 and j ≤ N do

8: φ̃ = φ̂j

9: j = j + 1
end

10: if f(φ̃) < 0 then

11: φn = root(f, [φn−1, φ̃])

12: else

13: φn = 1.
end

14: n = n + 1
end

Notation:
~̂
φ is the grid of “proposed bounds”.

j is the index of the current “proposed bound”.

N is the number of elements in the grid of “proposed bounds”.

φ̃ is the current proposed upper bound.

In this algorithm, we generate a grid of proposed bounds,
~̂
φ, which could be either a

uniform grid from (0, 1], or some other kind of grid, e.g. a fixed schedule generated from

some Nφ and λ for a similar model/dataset. A bound, φ̃, is valid if f(φ̃) < 0. Starting from
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the previous valid upper bound φ̃ = φ̂j, the inner loop finds the next valid upper bound for

the interval [φn−1, φ̃] in {φ̂j+1, ..., φ̂N}. φ̃ could remain unchanged (φ̃ = φ̂j) if the bound still

remains valid (so the loop will never be entered) or could increment however many times is

necessary for φ̃ = φ̂k for some k > j to be a valid upper bound.

The reason for the last conditional “if f(φ̃) < 0” is if j > N , then there are no more

elements of the grid that are valid to propose as an upper bound, i.e. φ̃ = φ̂N = 1. However,

it could still be the case that there are valid upper bounds between φ̃ = φ̂N−1 and φ̃ = φ̂N = 1

that would cause ∆ESS = α.
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B DSGE Model Descriptions

This section of the appendix contains the model specifications for AS, SW, and SWFF,

along with a description of how we construct our data, and a table with the priors on the

parameters of the various models.

B.1 An-Schorfheide Model (AS)

B.1.1 Equilibrium Conditions

We write the equilibrium conditions of the three equation model from An and Schorfheide

(2007), by expressing each variable in terms of percentage deviations from its steady state

value. Let x̂t = ln(xt/x) and write

1 = βEt
[
e−τ ĉt+1+τ ĉt+R̂t−ẑt+1−π̂t+1

]
(A-7)

0 =
(
eπ̂t − 1

) [(
1− 1

2ν

)
eπ̂t +

1

2ν

]
(A-8)

−βEt
[(
eπ̂t+1 − 1

)
e−τ ĉt+1+τ ĉt+ŷt+1−ŷt+π̂t+1

]
+

1− ν
νφπ2

(
1− eτ ĉt

)
eĉt−ŷt = e−ĝt − φπ2g

2

(
eπ̂t − 1

)2
(A-9)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t (A-10)

+(1− ρR)ψ2 (ŷt − ĝt) + εR,t

ĝt = ρgĝt−1 + εg,t (A-11)

ẑt = ρz ẑt−1 + εz,t. (A-12)

The equilibrium law of motion of consumption, output, interest rates, and inflation has to

satisfy the expectational difference equations (A-7) to (A-12).

Log-linearization and straightforward manipulation of Equations (A-7) to (A-9) yield the

following representation for the consumption Euler equation, the New Keynesian Phillips
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curve, and the monetary policy rule:

ŷt = Et[ŷt+1]− 1

τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1]

)
(A-13)

+ĝt − Et[ĝt+1]

π̂t = βEt[π̂t+1] + κ(ŷt − ĝt)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (ŷt − ĝt) + εR,t

where

κ = τ
1− ν
νπ2φ

. (A-14)

B.1.2 Measurement Equation

The AS model is estimated using quarterly output growth, and annualized CPI inflation and

nominal federal funds rate, whose measurement equations are given below:

Output growth = γ + 100(yt − yt−1 + zt)

CPI = π∗ + 400πt

FFR = R∗ + 400Rt

(A-15)

where all variables are measured in percent. π∗ and R∗ measure the steady-state levels of net

inflation and short term nominal interest rates, respectively. They are treated as parameters

in the estimation.

B.2 Smets-Wouters Model (SW)

We include a brief description of the log-linearized equilibrium conditions of the Smets and

Wouters (2007) model to establish the foundation for explaining the later models. We de-

viate from the original Smets-Wouters specification by detrending the non-stationary model

variables by a stochastic rather than a deterministic trend. This is done in order to express

the equilibrium conditions in a flexible manner that accommodates both trend-stationary

and unit-root technology processes. The model presented below is the model referred to in

the paper as the SW model.

Let z̃t be the linearly detrended log productivity process, defined here as:

z̃t = ρz z̃t−1 + σzεz,t, εz,t ∼ N(0, 1) (A-16)
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All non-stationary variables are detrended by Zt = e
γt+ 1

1− α z̃t , where γ is the steady-

state growth rate of the economy. The growth rate of Zt in deviations from γ, which is

denoted by zt, follows the process:

zt = ln(Zt/Zt−1)− γ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t (A-17)

All of the variables defined below will be given in log deviations from their non-stochastic

steady state, where the steady state values will be denoted by *-subscripts.

B.2.1 Equilibrium Conditions

The optimal allocation of consumption satisfies the following Euler equation:

ct = − (1− he−γ)
σc(1 + he−γ)

(Rt − Et[πt+1] + bt) +
he−γ

(1 + he−γ)
(ct−1 − zt)

+
1

(1 + he−γ)
Et [ct+1 + zt+1] +

(σc − 1)

σc(1 + he−γ)

w∗L∗
c∗

(Lt − Et[Lt+1]) . (A-18)

where ct is consumption, Lt denotes hours worked, Rt is the nominal interest rate, and πt is

inflation. The exogenous process bt drives a wedge between the intertemporal ratio of the

marginal utility of consumption and the riskless real return, Rt − Et[πt+1], and follows an

AR(1) process with parameters ρb and σb. The parameters σc and h capture the relative

degree of risk aversion and the degree of habit persistence in the utility function, respectively.

The optimal investment decision comes from the optimality condition for capital producers

and satisfies the following relationship between the level of investment it and the value of

capital, qkt , both measured in terms of consumption:

qkt = S ′′e2γ(1+βe(1−σc)γ)

(
it −

1

1 + βe(1−σc)γ
(it−1 − zt)−

βe(1−σc)γ

1 + βe(1−σc)γ
Et[it+1 + zt+1]− µt

)
(A-19)

This relationship is affected by investment adjustment costs (S ′′ is the second derivative of

the adjustment cost function) and by the marginal efficiency of investment µt, an exogenous

process which follows an AR(1) with parameters ρµ and σµ, and that affects the rate of

transformation between consumption and installed capital (see Greenwood et al. (1998)).
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The installed capital, which we also refer to as the capital stock, evolves as:

k̄t =

(
1− i∗

k̄∗

)(
k̄t−1 − zt

)
+
i∗
k̄∗
it +

i∗
k̄∗
S ′′e2γ(1 + βe(1−σc)γ)µt (A-20)

where
i∗
k̄∗

is the steady-state ratio of investment to capital. The parameter β captures the

intertemporal discount rate in the utility function of the households.

The arbitrage condition between the return to capital and the riskless rate is:

rk∗
rk∗ + (1− δ)

Et[rkt+1] +
1− δ

rk∗ + (1− δ)
Et[qkt+1]− qkt = Rt + bt − Et[πt+1] (A-21)

where rkt is the rental rate of capital, rk∗ its steady-state value, and δ the depreciation rate.

The relationship between k̄t and the effective capital rented out to firms kt is given by:

kt = ut − zt + k̄t−1. (A-22)

where capital is subject to variable capacity utilization, ut.

The optimality condition determining the rate of capital utilization is given by:

1− ψ
ψ

rkt = ut. (A-23)

where ψ captures the utilization costs in terms of foregone consumption.

From the optimality conditions of goods producers it follows that all firms have the same

capital-labor ratio:

kt = wt − rkt + Lt. (A-24)

Real marginal costs for firms are given by:

mct = (1− α) wt + α rkt . (A-25)

where α is the income share of capital (after paying markups and fixed costs) in the produc-

tion function.

All of the equations mentioned above have the same form regardless of whether or not

technology has a unit root or is trend-stationary. A few small differences arise for the

following two equilibrium conditions.
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The production function under trend stationarity is:

yt = Φp (αkt + (1− α)Lt) + I{ρz < 1}(Φp − 1)
1

1− α
z̃t. (A-26)

The last term (Φp − 1)
1

1− α
z̃t drops out if technology has a stochastic trend because then

one must assume that the fixed costs are proportional to the trend.

The resource constraint is:

yt = gt +
c∗
y∗
ct +

i∗
y∗
it +

rk∗k∗
y∗

ut − I{ρz < 1} 1

1− α
z̃t, (A-27)

The term − 1

1− α
z̃t disappears if technology follows a unit root process.

Government spending, gt, is assumed to follow the exogenous process:

gt = ρggt−1 + σgεg,t + ηgzσzεz,t (A-28)

The price and wage Phillips curves respectively are:

πt =
(1− ζpβe(1−σc)γ)(1− ζp)

(1 + ιpβe(1−σc)γ)ζp((Φp − 1)εp + 1)
mct

+
ιp

1 + ιpβe
(1−σc)γ

πt−1 +
βe(1−σc)γ

1 + ιpβe
(1−σc)γ

Et[πt+1] + λf,t (A-29)

wt =
(1− ζwβe(1−σc)γ)(1− ζw)

(1 + βe(1−σc)γ)ζw((λw − 1)εw + 1)

(
wht − wt

)
− 1 + ιwβe

(1−σc)γ

1 + βe(1−σc)γ
πt +

1

1 + βe(1−σc)γ
(wt−1 − zt − ιwπt−1)

+
βe(1−σc)γ

1 + βe(1−σc)γ
Et [wt+1 + zt+1 + πt+1] + λw,t (A-30)

where ζp, ιp, and εp are the Calvo parameter, the degree of indexation, and the curvature pa-

rameters in the Kimball aggregator for prices, with the equivalent parameters with subscript

w corresponding to wages.

The variable wht corresponds to the household’s marginal rate of substitution between con-

sumption and labor and is given by:

1

1− he−z∗∗
(
ct − he−z

∗
∗ct−1 + he−z

∗
∗zt
)

+ νlLt = wht . (A-31)
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where ηl is the curvature of the disutility of labor (equal to the inverse of the Frisch elasticity

in the basence of wage rigidities).

The mark-ups λf,t and λw,t follow exogenous ARMA(1, 1) processes:

λf,t = ρλfλf,t−1 + σλf ελf,t + ηλfσλf ελf ,t−1 (A-32)

λw,t = ρλwλw,t−1 + σλwελw,t + ηλwσλwελw,t−1 (A-33)

Lastly, the monetary authority follows a policy feedback rule:

Rt = ρRRt−1 +(1−ρR)
(
ψ1πt + ψ2(yt − yft )

)
+ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+rmt (A-34)

where the flexible price/wage output yft is obtained from solving the version of the model

absent nominal ridigities (without equations (3)-(12) and (15)), and the residual rmt follows

an AR(1) process with parameters ρrm and σrm .

The exogenous component of the policy rule rmt evolves according to the following process:

rmt = ρrmr
m
t−1 + εRt +

K∑
k=1

εRk,t−k (A-35)

where εRt is the usual contemporaneous policy shock and εRk,t−k is a policy shock that is known

to agents at time t − k, but affects the policy rule k periods later—that is, at time t. As

outlined in Laseen and Svensson (2011), these anticipated policy shocks allow us to capture

the effects of the zero lower bound on nominal interest rates, as well as the effects of forward

guidance in monetary policy.

B.2.2 Measurement Equations

The SW model is estimated using seven quarterly macroeconomic time series, whose mea-

surement equations are given below:

Output growth = γ + 100(yt − yt−1 + zt)

Consumption growth = γ + 100(ct − ct−1 + zt)

Investment growth = γ + 100(it − it−1 + zt)

Real Wage growth = γ + 100(wt − wt−1 + zt)

Hours = l̄ + 100lt

Inflation = π∗ + 100πt

FFR = R∗ + 100Rt

FFRe
t,t+j = R∗ + Et[Rt+j], j = 1, ..., 6

(A-36)
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where all variables are measured in percent, π∗ and R∗ measure the steady-state levels of

net inflation and short term nominal interest rates, respectively, and l̄ represents the mean

of the hours (this variable is measured as an index).

The priors for the DSGE model parameters are the same as in Smets and Wouters (2007)

and are summarized in Panel I of the priors table listed in the SW++ section.

B.3 Smets-Wouters Model with Financial Frictions (SWFF)

Financial frictions are incorporated into the SW model following the work of Bernanke et

al. (1999a) and Christiano et al. (2009).

B.3.1 Equilibrium Conditions

SWFF replaces (A-21) with the following equation for the excess return on capital—that is,

the spread between the expected return on capital and the riskless rate—and the definition

of the return on capital, R̃k
t , respectively:

Et
[
R̃k
t+1 −Rt

]
= −bt + ζsp,b(q

k
t − k̄t − nt) + σ̃ω,t (A-37)

and

R̃k
t − πt =

rk∗
rk∗ + (1− δ)

rkt +
(1− δ)

rk∗ + (1− δ)
qkt − qkt−1 (A-38)

where R̃k
t is the gross nominal return on capital for entrepreneurs, nt is entrepreneurial equity,

and σ̃ω,t captures mean-preserving changes in the cross-sectional dispersion of ability across

entrepreneurs (see Christiano et al. (2009)) and follows an AR(1) process with parameters

ρσω and σσω .

The following equation outlines the evolution of entrepreneurial net worth:

n̂t = ζn,R̃kt

(
R̃k
t − πt

)
− ζn,R̃kt (Rt−1−πt) + ζn,qK(qkt−1 + k̄t−1) + ζn,nnt−1−

ζn,σω
ζsp,σω

σ̃ω,t−1 (A-39)

Moreover, we introduce a time-varying inflation target, π∗t , that allows us to capture the

dynamics of inflation and interest rates in the estimation sample. The inflation target evolves

according to

π∗t = ρπ∗π
∗
t−1 + σπ∗επ∗,t (A-40)
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where 0 < ρπ∗ < 1 and επ∗,t is an i.i.d. shock. π∗t is a stationary process, although the prior

on ρπ∗ forces this process to be highly persistent.

B.3.1.1 Measurement Equations

SWFF’s additional measurement equation for the spread (given below) augments the stan-

dard set of SW measurement equations (A-36) along with (A-42).

Spread = SP∗ + 100Et
[
R̃k
t+1 −Rt

]
(A-41)

where SP∗ measures the steady-state spread. Priors are specified for the parameters SP∗,

ζsp,b, ρσω , σσω , and the parameters F̄∗ and γ∗ (the steady-state default probability and the

survival rate of entrepreneurs, respectively), are fixed.

Moreover, there is an additional measurement equation for 10-year inflation expectations

that augments (A-36), given by

10y Infl. Expectations = π∗ + Et

[
1

40

39∑
j=0

πt+j

]
(A-42)

B.4 Data

Data on nominal GDP (GDP), the GDP deflator (GDPDEF), nominal personal consumption

expenditures (PCEC), and nominal fixed private investment (FPI) are produced at a quar-

terly frequency by the Bureau of Economic Analysis, and are included in the National Income

and Product Accounts (NIPA). Average weekly hours of production and non-supervisory

employees for total private industries (AWHNONAG), civilian employment (CE16OV), and

the civilian non-institutional population (CNP16OV) are produced by the Bureau of Labor

Statistics (BLS) at a monthly frequency. The first of these series is obtained from the Estab-

lishment Survey, and the remaining from the Household Survey. Both surveys are released

in the BLS Employment Situation Summary. Since our models are estimated on quarterly

data, we take averages of the monthly data. Compensation per hour for the non-farm busi-

ness sector (COMPNFB) is obtained from the Labor Productivity and Costs release, and

produced by the BLS at a quarterly frequency.
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The federal funds rate (henceforth FFR) is obtained from the Federal Reserve Board’s

H.15 release at a business day frequency. Long-run inflation expectations (average CPI

inflation over the next 10 years) are available from the SPF from 1991:Q4 onward. Prior

to 1991:Q4, we use the 10-year expectations data from the Blue Chip survey to construct a

long time series that begins in 1979:Q4.15 Since the BCEI and the SPF measure inflation

expectations in terms of the average CPI inflation and we instead use the GDP deflator

and/or core PCE inflation as observables for inflation, as in Del Negro and Schorfheide

(2013) we subtract 0.5 from the survey measures, which is roughly the average difference

between CPI and GDP deflator inflation across the whole sample. We measure interest-rate

spreads as the difference between the annualized Moody’s Seasoned Baa Corporate Bond

Yield and the 10-Year Treasury Note Yield at constant maturity. Both series are available

from the Federal Reserve Board’s H.15 release.

The data are transformed following Smets and Wouters (2007), with the exception of the

civilian population data, which are filtered using the Hodrick-Prescott (HP) filter to remove

jumps around census dates.16 For each financial variable, we take quarterly averages of the

annualized daily data and divide by four. Let ∆ denote the temporal difference operator.

Then:

GDP growth = 100 ∗∆LN((GDP/GDPDEF )/CNP16OV )

Consumption growth = 100 ∗∆LN((PCEC/GDPDEF )/CNP16OV )

Investment growth = 100 ∗∆LN((FPI/GDPDEF )/CNP16OV )

Real wage growth = 100 ∗∆LN(COMPNFB/GDPDEF )

Hours worked = 100 ∗ LN((AWHNONAG ∗ CE16OV/100)/CNP16OV )

GDP deflator inflation = 100 ∗∆LN(GDPDEF )

FFR = (1/4) ∗ FEDERAL FUNDS RATE

FFRe
t+k|t = (1/4) ∗ BLUE CHIP k-QUARTERS AHEAD FFR FORECAST

10y inflation exp = (10-year average CPI inflation forecast− 0.50)/4

Spread = (1/4) ∗ (Baa Corporate− 10 year Treasury)

In the long-term inflation expectation transformation, 0.50 is the average difference be-

tween CPI and GDP annualized inflation from the beginning of the sample to 1992.

15Since the Blue Chip survey reports long-run inflation expectations only twice a year, we treat these

expectations in the remaining quarters as missing observations and adjust the measurement equation of the

Kalman filter accordingly.
16For each real-time vintage, we use the HP filter on the population data observations available as of the

forecast date. This smooths out spikes in the population series resulting from Census Bureau revisions (as

pointed out by Edge and Gürkaynak (2010b)).
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Hourly wage vintages are only available on ALFRED beginning in 1997; we use pre-1997

vintages from Edge and Gürkaynak (2010a). The GDP, GDP deflator, investment, hours,

and employment series have vintages available for the entire sample. The financial variables

and the population series are not revised.

As mentioned in the main text, in order to provide the model with the ability to ac-

commodate federal funds rate expectations, the policy rule in the model is augmented with

anticipated policy shocks. For example, for T = 2008:Q4, we use the January 2009 BCFF

forecasts of interest rates. We use K = 6 anticipated shocks, which is the maximum number

of BCFF forecast quarters (excluding the observed quarterly average that we impute in the

first forecast period). Because the BCFF survey is released during the first few days of the

month, the BCFF forecasters have no information about quarter T + 1.

B.5 Prior Specifications

We estimate the model using Bayesian techniques. This requires the specification of a

prior distribution for the model parameters. For most parameters common with Smets

and Wouters (2007), we use the same marginal prior distributions. As an exception, we

favor a looser prior than Smets and Wouters (2007) for the quarterly steady-state inflation

rate π∗; it is centered at 0.75% and has a standard deviation of 0.4%. Regarding the fi-

nancial frictions, we specify priors for the parameters SP∗, ζsp,b, ρσω , and σσω , while we fix

the parameters corresponding to the steady-state default probability and the survival rate

of entrepreneurs, respectively. In turn, these parameters imply values for the parameters

of (A-39). Information on the priors is provided in the subsequent tables.

Table A-1: Priors for An-Schorfheide Model

Type Mean Std Dev Type Mean Std Dev

eR - 0.45 0.00 ρg U 0.50 0.29

ey - 0.12 0.00 ρz U 0.50 0.29

eπ - 0.29 0.00 σR IG 0.40 4.00

rA G 0.50 0.50 σg IG 1.00 4.00

γQ N 0.40 0.20 σz IG 0.50 4.00

κ U 0.50 0.29 τ G 2.00 0.50

π∗ G 7.00 2.00 ψ1 G 1.50 0.25

ρR U 0.50 0.29 ψ2 G 0.50 0.25



Note: The table shows the prior specifications of each of the model parameters in the An and Schorfheide (2007, AS) model.
The table specifies the parameter name, the distribution type, where B, N, G, and IG stand for Beta, Normal, Gamma, Inverse
Gamma, and the parameter means and standard deviations (written in parentheses). The Inverse Gamma prior is characterized
by the mode and degrees of freedom.

Table A-2: Standard and Diffuse Priors for Medium Scale DSGE Models

Standard Prior Diffuse Prior

Parameter Type SW Common SWFF SW Common SWFF

Policy

ψ1 N 1.500 (0.250) 1.500 (0.750)

ψ2 N 0.120 (0.050) 0.120 (0.150)

ψ3 N 0.120 (0.050) 0.120 (0.150)

ρ B 0.750 (0.100) 0.500 (0.289)

ρrm B 0.500 (0.200) 0.500 (0.289)

σrm IG 0.100 (2.000) 0.100 (2.000)

Nominal Rigidities

ζp B 0.500 (0.100) 0.500 (0.289)

ιp B 0.500 (0.150) 0.500 (0.289)

εp - 10.000 10.000

ζw B 0.500 (0.100) 0.500 (0.289)

ιw B 0.500 (0.150) 0.500 (0.289)

εw - 10.000 10.000

Other Endogenous Propagation and Steady State

100γ N 0.400 (0.100) 0.400 (0.300)

α N 0.300 (0.050) 0.300 (0.150)

100(β−1 − 1) G 0.250 (0.100) 0.250 (0.300)

σc N 1.500 (0.370) 1.500 (1.110)

h B 0.700 (0.100) 0.500 (0.289)

νl N 2.000 (0.750) 2.000 (2.250)

δ - 0.025 0.025

Φ N 1.250 (0.120) 1.250 (0.360)

S′′ N 4.000 (1.500) 4.000 (4.500)

ψ B 0.500 (0.150) 0.500 (0.289)

L̄ N -45.00 (5.00) -45.00(15.00)

λw - 1.500 1.500

π∗ G 0.620 (0.100) 0.750 (0.400) 0.620 (0.300) 0.750 (0.400)

g∗ - 0.180 0.180
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Table A-2: Standard and Diffuse Priors for Medium Scale DSGE Models

Standard Prior Diffuse Prior

Parameter Type SW Common SWFF SW Common SWFF

Financial Frictions (SWFF Only)

F (ω) - 0.030 0.030

spr∗ G - 2.000 (0.100) 2.000 (0.100)

ζspb B - 0.050 (0.005) 0.050 (0.005)

γ∗ - 0.990 0.990

Exogenous Process

ρg B 0.500 (0.200) 0.500 (0.289)

ρb B 0.500 (0.200) 0.500 (0.289)

ρµ B 0.500 (0.200) 0.500 (0.289)

ρz B 0.500 (0.200) 0.500 (0.289)

ρλf B 0.500 (0.200) 0.500 (0.289)

ρλw B 0.500 (0.200) 0.500 (0.289)

ηλf B 0.500 (0.200) 0.500 (0.289)

ηλw B 0.500 (0.200) 0.500 (0.289)

σg IG 0.100 (2.000) 0.100 (2.000)

σb IG 0.100 (2.000) 0.100 (2.000)

σµ IG 0.100 (2.000) 0.100 (2.000)

σz IG 0.100 (2.000) 0.100 (2.000)

σλf IG 0.100 (2.000) 0.100 (2.000)

σλw IG 0.100 (2.000) 0.100 (2.000)

ηgz B 0.500 (0.200) 0.500 (0.289)

Financial Frictions Exogenous Process (SWFF Only)

ρσω B - 0.750 (0.150) - 0.500 (0.289)

ρπ∗ - 0.990 0.990

σσω IG - 0.050 (4.000) 0.050 (4.000)

σπ∗ IG - 0.030 (6.000) 0.030 (6.000)

Note: The table shows the prior specifications of each of the model parameters in the SW and SWFF models for both a
“standard prior” and “diffuse prior”. The diffuse priors specification follows Herbst and Schorfheide (2014) Table A-3. The
table specifies the parameter name, the distribution type, where B, N, G, and IG stand for Beta, Normal, Gamma, Inverse
Gamma, and the parameter means and standard deviations (written in parentheses). The Inverse Gamma prior is characterized
by the mode and degrees of freedom. The priors for the parameters that are common across models are listed under the
“Common” column.
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C Additional Results

This section contains additional details relating to the results reported in the main paper.

In Section C.1 we show summary tables for the performance of the SMC algorith on the AS

and SW models for NMH = 3 and NMH = 5. In Section C.2 we show the evolution of log

predictive scores over time.

C.1 Summary Statistics for NMH = 3 and NMH = 5

Table A-3: AS Model: 3 MH Steps Per Mutation

Fixed α =0.90 α =0.95 α =0.97 α =0.98

Mean log(MDD) -1032.00 -1032.44 -1032.01 -1031.84 -1031.76

StdD log(MDD) 0.28 0.46 0.23 0.15 0.11

Schedule Length 200.00 106.52 197.56 300.72 413.46

Resamples 12.98 14.75 13.75 12.73 11.04

Runtime [Min] 2.25 1.35 2.31 3.22 4.34

Notes: Results are based on Nrun = 400 runs of the SMC algorithm. We report averages across runs for the
runtime, schedule length, and number of resampling steps.

Table A-4: AS Model: 5 MH Steps Per Mutation

Fixed α =0.90 α =0.95 α =0.97 α =0.98

Mean log(MDD) -1032.03 -1032.44 -1032.07 -1031.94 -1031.89

StdD log(MDD) 0.24 0.41 0.21 0.14 0.11

Schedule Length 200.00 104.36 190.29 286.06 389.48

Resamples 12.06 14.11 13.00 12.00 10.93

Runtime [Min] 3.08 1.73 2.90 3.98 5.34

Notes: Results are based on Nrun = 400 runs of the SMC algorithm. We report averages across runs for the
runtime, schedule length, and number of resampling steps.
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Table A-5: SW Model: 3 MH Steps Per Mutation

Fixed α =0.90 α =0.95 α =0.97 α =0.98

Mean log(MDD) -1176.76 -1179.65 -1177.76 -1176.99 -1176.65

StdD log(MDD) 0.75 1.35 0.87 0.84 0.65

Schedule Length 500.00 191.58 355.68 547.25 760.71

Resamples 24.59 26.95 25.03 23.33 21.15

Runtime [Min] 207.66 73.59 137.32 211.64 293.92

Notes: Results are based on Nrun = 200 runs of the SMC algorithm. We report averages across runs for the
runtime, schedule length, and number of resampling steps.

Table A-6: SW Model: 5 MH Steps Per Mutation

Fixed α =0.90 α =0.95 α =0.97 α =0.98

Mean log(MDD) -1176.70 -1179.04 -1177.52 -1176.89 -1176.62

StdD log(MDD) 0.50 1.27 0.80 0.73 0.51

Schedule Length 500.00 188.14 346.19 525.90 721.36

Resamples 23.27 26.23 24.20 22.33 20.04

Runtime [Min] 324.15 110.10 202.83 311.21 424.92

Notes: Results are based on Nrun = 200 runs of the SMC algorithm. We report averages across runs for the
runtime, schedule length, and number of resampling steps.
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C.2 Log Predictive Scores Over Time

Figure A-1: GDP Log Predictive Scores Over Time for SW vs SWFF
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Note: The four panels show the predictive density comparisons across time for the SW (blue line) and SWFF (red line) DSGE
models averaged over 2, 4, 6, and 8 quarter horizons for output growth. Forecast origins from January 1992 to January 2017
only are included in these calculations. The x-axis shows the quarter in which the forecasts were generated (time T + 1 in the
parlance of section 5.1).
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Figure A-2: GDP Deflator Log Predictive Scores Over Time for SW vs SWFF

Horizon = 2 Horizon = 4

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
-4

-3

-2

-1

0

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
-4

-3

-2

-1

0

Horizon = 6 Horizon = 8

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
-4

-3

-2

-1

0

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
-4

-3

-2

-1

0

Note: The four panels show the predictive density comparisons across time for the SW (blue line) and SWFF (red line) DSGE
models averaged over 2, 4, 6, and 8 quarter horizons for inflation. Forecast origins from January 1992 to January 2017 only are
included in these calculations. The x-axis shows the quarter in which the forecasts were generated (time T + 1 in the parlance
of section 5.1).
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Figure A-3: GDP Deflator Log Predictive Scores Over Time for SW vs SWFF
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Note: The four panels show the predictive density comparisons across time for the SW (blue line) and SWFF (red line) DSGE
models averaged over 2, 4, 6, and 8 quarter horizons for output growth and inflation. Forecast origins from January 1992 to
January 2017 only are included in these calculations. The x-axis shows the quarter in which the forecasts were generated (time
T + 1 in the parlance of section 5.1).
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